
Supercharging Performance Testing:
Bridging the Gap Between Backend
and Frontend with k6

Ayush Goyal
Senior Software Engineer @ Grafana Labs

Agenda
How we’ll structure our time

● What is Performance Testing?

● Introduction to Protocol-Based Load Testing

● Frontend and browser testing

● Bridging Backend and Frontend testing - Hybrid testing

● Exploring k6: Features and Capabilities

● Benefits of running hybrid tests in Grafana K6 cloud

What is Performance Testing?
It measures qualitative aspects of a user's experience of
a system, such as its responsiveness and reliability.

Why should we do performance testing?

● Improve user experience.

● Prepare for unexpected demand.

● Increase confidence in the application.

● Assess and optimize infrastructure.

What is Load
testing?

Load testing is the process of putting
demand on a system and measuring its

response

1. Smoke Testing
2. “Average” load test
3. Stress Testing
4. Soak Testing
5. Spike Testing
6. Breakpoint test

Different types of
Load testing

https://grafana.com/docs/k6/latest/testing-guides/test-types/

1. Smoke Testing

● Minimal Load (around 5 VUs or less)

● Short duration (few seconds to

couple of minutes)

● Verify test script does not have any

errors

● Verify system-under-test is properly

operational

● Run it first after any change to test

script or application

2. “Average” load test

● Assess how the system behaves

under expected normal conditions.

● Typically increases the throughput or

VUs gradually and keeps that

average load for some time.

● Also called day-in-life test or volume

test

3. Stress testing

● Assesses how the system performs
when loads are heavier than usual.

● Main difference from the Average Load
Test is the higher load.

● Load should be higher than what the
system experiences on average.

● Ideal to run only after successful average
load test using the same script

4. Soak Testing

● It is another variation of the

Average-Load test which focuses on

extended periods.

● The peak load duration extends several

hours or even days.

● Should be executed after successfully

running smoke and average load test

4. Spike Testing

● It verifies system can survive sudden and

massive traffic.

● Extremely high loads in a shot interval of

time.

● Generally recommended to execute

when the system expects to receive a

sudden rush of activity.

5. Breakpoint testing

● The aim of this test is to find the system

limits

● Gradually increase load to identify the

capacity limits of the system.

● Recommended to run only after system

is known to be functioning under all

other load types.

● Avoid breakpoint tests in elastic cloud

environments.

Frontend Testing

What is Frontend testing?

● Verifies application performance on the interface level.

● Concerned with the end-user experience of an application, usually involving a

browser.

● Primarily measures a single user's experience of the system

● It has metrics that are distinct from backend performance testing like core web

vitals - LCP (Largest Contentful Paint), CLS (Cumulative Layout Shift)

Browser testing
with K6

Browser testing with K6

● Allows automating browser actions for end-to-end web testing

● Collects frontend performance metrics as part of your existing k6 tests

● Browser level API has rough compatibility with Playwright for easier migration.

● Easy to mix browser-level scripts with existing protocol-level scripts to implement

a hybrid approach to performance testing.

https://playwright.dev/docs/api/class-playwright

Hybrid Testing

Issues with only doing:

● Focuses solely on backend without any regard to
user experience.

● Difficult to add and test complex user flows

● Difficult to maintain as the usage grows

Backend Testing VS

● Expensive and resource intensive to create high
amount of load.

● Tests only for handful of users, hence does not tell
how UI will behave under extreme stress.

Frontend Testing

Benefits of Hybrid testing

Enhance user experience
by monitoring browser
performance metrics

alongside existing
protocol metrics.

Identify blind spots and errors
with browser-based

performance testing that can
uncover browser-specific

issues missed by
protocol-level testing.

Facilitate cross-team
collaboration by enabling

developers, test automation
engineers, and SDETs to
utilize a shared tool for
performance testing.

What is K6?

Tests as Code - Programmable

Portable open source load testing tool

Same k6 test script for multiple execution modes

https://k6.io/docs/get-started/running-k6/#execution-modes

No NodeJS

JAVASCRIPT RUNTIME

GOJA

GOLANG

Script.JS

Performant

Other testing protocols

Other testing cases

Extensible
k6.io/docs/extensions/getting-started/explore/

Other storage options

JAVASCRIPT RUNTIME

GOJA

GOLANG

Script.JS

 xk6 EXTENSIONS

https://k6.io/docs/extensions/getting-started/explore/

k6 Concepts

Configurable options → https://k6.io/docs/using-k6/k6-options/reference/

Options

CLI flagsENV variablesScript optionsDefault Config file

Order of preference

https://k6.io/docs/using-k6/k6-options/reference/

Test life cycle / Test data -> https://k6.io/docs/using-k6/test-lifecycle/

https://k6.io/docs/using-k6/test-lifecycle/

Built-in Metrics Custom Metrics
new Trend(‘metric_name’);

new Rate(‘metric_name’);

new Counter(‘metric_name’);

new Gauge(‘metric_name’);

https://k6.io/docs/using-k6/metrics/reference/
https://k6.io/docs/using-k6/metrics/create-custom-metrics/

1. Shared iterations
2. Per VU iterations
3. Constant VUs
4. Ramping VUs
5. Constant Arrival Rate
6. Ramping Arrival Rate
7. Externally Controlled

Executors in K6

1. Shared iterations

● Shares iterations between the number of VUs.

● Test ends once k6 executes all iterations.

2. Per VU iterations

● Each VU executes an exact number of iterations.

● The total number of completed iterations equals vus * iterations.

● Can be useful when you have fixed sets of test data that you want to partition

between VUs.

3. Constant VUs

● A fixed number of VUs execute as many iterations as possible for a specified

amount of time.

● Useful if you need a specific number of VUs to run for a certain amount of time

4. Ramping VUs

● A variable number of VUs executes as many iterations as possible for a specified

amount of time.

● A shortcut to this executor, use the `stages` option i.e. a list of “{ target: ...,

duration: ... }” objects.

● A good fit if you need VUs to ramp up or down during specific periods of time

5. Constant Arrival Rate

● Continues to start iterations at the given rate as long as VUs are available.

● Iterations start independently of system response.

6. Ramping arrival rate

● Starts iterations at a variable rate.

● Dynamically changes the number of iterations to start according to the stages.

7. Externally controlled

● Control execution at runtime via K6’s rest API or the CLI

● Change aspects like number of VUs, Max VUs, pause or resume the test, list

groups, set and get the setup data

● Helpful during the exploratory phase of deciding how many VUs your system can

handle

● Only available when using k6 locally and not available in cloud

https://k6.io/docs/misc/k6-rest-api/
https://k6.io/blog/how-to-control-a-live-k6-test/

Using scenarios for hybrid testing

● Scenarios are independent from each other

and run in parallel.

Use `startTime` property to get sequential

behaviour.

● Generate load on service using `stress`

scenario and test actual user flow using

`userFlow` scenario.

Running a hybrid
test with K6 in
Cloud

http://www.youtube.com/watch?v=ZFQlSue1YPw

Benefits of running
hybrid tests in

cloud

1. Test for users from different geographic locations

● Easily distribute your virtual users across the world with a simple configuration.

● Simulate real world traffic generated from different parts of the world.

2. Easily compare results with previous test runs

● Compare test run results to find regressions and fix performance bottlenecks

faster

● Learn More on test comparison.

https://k6.io/docs/cloud/analyzing-results/test-comparison/

3. Custom dashboard from test run results

● Using Grafana cloud k6 adds a “K6” datasource to your stack which can be

queried to get specific test run metrics to create custom dashboards for better

tracking and visualizations on your test runs.

4. No infrastructure maintenance for browsers

● Running browser tests requires you to have, either
○ Beefy machines to support multiple browsers in the same instance, or

○ Use costly cloud browsers and maintain custom connection logic

● With Grafana K6 browser in Cloud, run browser tests in cloud without worrying

about the infrastructure changes.

Recap

● Performance testing

● Load testing
○ Types of Load testing

● Frontend and Browser testing

● Hybrid testing

● K6 & Running a hybrid test using K6

● Benefits of running on hybrid test on cloud

Thank you

