
Using Async API
schema to define
event driven
architecture with
AWS SNS

Presented by

Ayush Goyal
Software Engineer II
Integrations Squad,
Postman

Agenda

1 What is an event and event-driven architecture

2 What is AWS Simple Notification Service(SNS)

3 Use case we had at Postman

4 How Async API helped us to quickly solve our problem.

What is an Event?

What is Event-Driven Architecture?

2 Components of event-driven architecture

● Event Producer
● Event Consumer
● Event Router

3 Decoupled producer and consumer

1 Using events for communication

Benefits of Event-Driven Architecture?

2 Versatility in choosing technical stack

3 Hassle free cross-team dependencies

1 Parallel Processing

What is SNS (Simple Notification Service) ?

2 In-built attribute based message filtering mechanism

3 How the communication works?

1 An Event router which provides message delivery

How does the message filtering work on
SNS?

2 For it to match a message, the message must contain all the attribute keys
listed in the policy.

3 Attributes of the message not mentioned in the filtering policy are ignored.

1 Boolean logic - it either matches filter policy, or not

5 Number matching is at the string representation level. 300 != 300.0

4 The matching is exact (character-by-character), without case-folding or any
other string normalization.

How attribute based message filtering works at SNS

Use case at Integrations Squad in
Postman

2 Process those messages to trigger relevant integrations

3 The service should be completely decoupled

1 Get in-flow of event messages from various other teams

4 Adding new service which can start publishing events should
be easy and fast

5 A new team should be able to start consuming these
events easily

Different approaches for the
solution

Approach 1
Use SNS to publish to squad specific queues and then forward events to consumer

Finalised Approach
Consumer to own complete infrastructure which connects to SNS

How Async API helped us

2 Allowed both the involved teams to start working parallely with 100%
confidence

3 Provided a one-stop repository for future teams to know the event structure
to easily start event consumption for new use cases

1 Made it easy to review the payload and event structures

What if - teams don’t use Async API

Defining essential components
of the Async API Schema

Servers

servers:

 production:

 url: <production url>

 protocol: https

 description: <small description>

 security:

 - basic_auth: []

 beta:

 url: <beta testing url>

 protocol: https

 description: <small description>

 security:

 - basic_auth: []

Security

components:

 securitySchemes:

 basic_auth:

 type: userPassword

 description: <description>

Channel & Schemas
• Channel Object:

• Holds the relative paths to the individual channel and
their operations

• The path will be relative to server
• Also known as "topics", "routing keys", "event types" or

"paths".
user/signedup:

 subscribe:

 message:

 $ref: "#/components/messages/userSignedUp"

• Schema Object:

• Allows the definition of input and output data types
• Can be objects but also primitives and arrays
• Can be used as value in reference object

$ref: '#/components/schemas/Pet'

Thank You

postman.com @getpostman

defcon_007

DefCon-007

https://www.defcon007.com/

https://www.defcon007.com/

