Using Async API
'POSTMAN schema to define
event driven
architecture with $
AWS SNS

Agenda

What is an event and event-driven architecture
What is AWS Simple Notification Service(SNS)

Use case we had at Postman

How Async API helped us to quickly solve our problem.

What is an Event?

What is Event-Driven Architecture? ®

1 | Using events for communication

) | Components of event-driven architecture

e Event Producer
e Event Consumer
e Event Router

3 | Decoupled producer and consumer

Benefits of Event-Driven Architecture? ®

1 | Parallel Processing

2 | Versatility in choosing technical stack

3 | Hassle free cross-team dependencies

What is SNS (Simple Notification Service) ? ®

1 | An Event router which provides message delivery
2 | In-built attribute based message filtering mechanism

3 | How the communication works?

How does the message filtering work on
SNS?

1 | Boolean logic - it either matches filter policy, or not

2 | For it to match a message, the message must contain all the attribute keys
listed in the policy. +

3 | Attributes of the message not mentioned in the filtering policy are ignored.

4 | The matching is exact (character-by-character), without case-folding or any
other string normalization.

5 | Number matching is at the string representation level. 300 != 300.0

How attribute based message filtering works at SNS @

Producers generate events and sends them to Ingestor with event payload
data
— Consumer 1
J\
\

Monit
oL N / FilterPolicy:

{

A B “event_type”: [‘monitor”, “collection”],
“event_action”: ["monitorRunFinished”, “collectionUpdated”]
\ / }
~N
Ingestor | A — B — C —
Ingestor verifies data source
and adds corresponding \
message attributes before Message Attributes
C publishing messaging to B
SNS. Message Attributes
Event payload is sent as it is \.
from here Message Attributes
Collection “—+ Consumer 2
Key Value
event_type manitor
event_action monitorRunFinished
Key Value FilterPolicy:
event_type monitor {
snCacion | meniterUpdated “event_type”: [‘monitor”, “collection”],

“event_action”: [“monitorUpdated”, “collectionUpdated”]

}

Key Value
event_type collection

event_action collectionUpdate

Use case at Integrations Squad in
Postman

Get in-flow of event messages from various other teams
Process those messages to trigger relevant integrations
The service should be completely decoupled

Adding new service which can start publishing events should

be easy and fast -

=

A new team should be able to start consuming these
events easily

Different approaches for the
solution

Approach 1

Use SNS to publish to squad specific queues and then forward events to consumer

1

Event producer

Collection update
Monitor run
APl update

Teamactivity

Ingestor

/events api

4
SQS Queues

Monitor Queue

writes verified

Collection Queue
event data

API Queue

Performs message filtering
and publishes messages to
corresponding SQS queues

6

Event consumer

5

Routers = - Worker 1

/
Monitor Router = @& = = = Worker 2

\

\
== = Worker 3

- = Worker 1
/7
/
Collection Router == @& = == = Worker 2
\

\
= = Worker 3

=l Worker 1
4

AP| Router == @& = == = Worker 2
\

\
== = Worker 3

Router works as
simple switch
which triggers
corresponding
consumers that
can be lambda.
API etc.

Finalised Approach 7’
Consumer to own complete infrastructure which connects to SNS

Owned by Consumer

1 - 4)
Event producer SQS Queues Event consumer

Queues added and
defined by consumers

Collection update Integrations Queue Integration Consumer

Monitor run _ . Monitor Queue Consumer
writes verified

Ingestor — —+ SNS

event data

APl update Collection Queue Consumer

Performs message filtering
Teamactivity and publishes messages to Consumer
corresponding SQS queues

How Async API helped us

Made it easy to review the payload and event structures

Allowed both the involved teams to start working parallely with 100%
confidence +

Provided a one-stop repository for future teams to know the event structure

to easily start event consumption for new use cases

What if - teams don't use Async API ®

R e ———
- — ﬁ
- — - — — g—— T
- - B

5 ‘ -«

Defining essential components °*
of the Async APl Schema

Servers

servers:
production:
url: <production url>
protocol: https
description: <small description>
security:
- basic_auth: []
beta:
url: <beta testing url>
protocol: https
description: <small description>

security:

- basic_auth: []

Security

components:
securitySchemes:
basic_auth:
type: userPassword

description: <description> %

Channel & Schemas

- Channel Object:

Holds the relative paths to the individual channel and

their operations
The path will be relative to server
Also known as "topics", "routing keys", "event types" or

"paths".

user/signedup:
subscribe:

message:

Sref: "#/components/messages/userSignedUp"

- Schema Object:

Allows the definition of input and output data types
Can be objects but also primitives and arrays

Can be used as value in reference object
$ref: '#/components/schemas/Pet’

Thank You

E defcon_007

® DefCon-007

== https://wwwsdefcon007.com/

https://www.defcon007.com/

